Matematický operátor sumácie (), aritmetická postupnosť, určovanie počtu vykonaných operácií na základe kódu v určitom programovacom jazyku.
Rýchlokurz matematického operátora sumácie ( – Sigma)
Keďže pre spracovanie určitého objemu údajov na vstupe (zväčša uložených v množine, poli, zozname, a podobne) sa používajú v programovacích jazykoch zväčša cykly, počet operácií sa dá vyjadriť pomocou matematického operátora sumácie – .
Napríklad: znamená, že začína na čísle 1 a pokračuje po 8 (vrátane). S každou iteráciou sa sčítava časť za operátorom (v tomto prípade sa teda číslo 1 sčíta presne 8 krát: , výsledok: ).
Toto by sa dalo vyjadriť v kóde takto:
vysledok = 0
for i in range(8): # vykoná sa 8 krát
vysledok += 1
print(vysledok) # 8
Sumácia môže mať rôzny názov a definíciu riadiacej premennej, ako aj hornú hranicu. Všetky nasledujúce zápisy sú platné:
Matematický zápis | Zápis v Python kóde |
suma = 0
for i in range(5, 10):
suma += 1
| |
suma = 0
for i in range(n+1):
suma += 1
| |
suma = 0
i = ... # napr.: môže pochádzať z vonkajšieho cyklu
for j in range(1, n+2):
suma += (i + 1)
|
Avšak, nemôžeme definovať negatívny krok. Napríklad, tento zápis nie je matematicky správny: ( by nikdy nenabudlo hodnotu 0).
Príklady pre sumáciu
Aritmetická postupnosť
Príklady vyššie sa dajú vypočítať manuálne. Ale čo ak by sme mali napríklad postupnosť 100 prvkov, napríklad: .
V tomto prípade by sa postupnosť rozbalila ako . Ručne, číslo po čísle, by sme to sčítavali asi iba dlho...
Avšak, múdri matematici si všimli, že medzi číslami platí určitý vzťah. Ak zoberieme v (rozbalenej) postupnosti vždy dva protiľahlé prvky a sčítame ich, výsledkom bude vždy rovnaké číslo. To znamená, že pre výpočet súčtu všetkých členov aritmetickej postupnosti vyššie nám stačí sčítať dva protiľahlé prvky (spravidla prvý a posledný prvok), vynásobiť ich počtom prvkov a vydeliť dvomi:

Výsledkok: . Samozrejme, je dôležité že číselný odstup od každého prvku (respektíve, súčet dvoch protiľahlých párov) je rovnaký. Napríklad, postupnosť čísiel nie je aritmetickou postupnosťou a teda by sme nemohli aplikovať metódu ktorá je znázornená vyššie.
Všeobecný vzorec pre výpočet súčtu prvkov aritmetickej postupnosti je:
Príklady pre výpočet súčtu prvkov aritmetickej postupnosti